Study Guide Chapter 13-15 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Refer to the drawings in Figure 13.2 of a single pair of homologous chromosomes as they might appear during various stages of either mitosis or meiosis, and answer the following questions.



Figure 13.2

| 1) Which diagra                 | m(s) represent anaphas     | se II of meiosis?                 |                                   |                       | 1) |
|---------------------------------|----------------------------|-----------------------------------|-----------------------------------|-----------------------|----|
| A) II only                      |                            |                                   |                                   |                       |    |
| B) III only                     |                            |                                   |                                   |                       |    |
| C) IV only                      |                            |                                   |                                   |                       |    |
| D) V only                       |                            |                                   |                                   |                       |    |
| E) either II                    | or V                       |                                   |                                   |                       |    |
| 2) After telopha                | se I of meiosis, the chro  | mosomal makeup of e               | each daughter cell is             |                       | 2) |
| <ul> <li>A) tetraplo</li> </ul> | id, and the chromosom      | es are each composed              | of two chromatids.                |                       |    |
| B) haploid                      | , and the chromosomes      | are each composed of              | two chromatids.                   |                       |    |
| C) diploid,                     | and the chromosomes        | are each composed of              | two chromatids.                   |                       |    |
| D) haploid                      | , and the chromosomes      | are each composed of              | a single chromatid.               |                       |    |
| E) diploid,                     | and the chromosomes        | are each composed of              | a single chromatid.               |                       |    |
| 3) If an organisr               | n is diploid and a certai  | n gene found in the o             | rganism has 18 know               | n alleles (variants), | 3) |
| then any give                   | n organism of that spec    | ies can/must have wh              | ich of the following?             |                       |    |
| A) up to 18                     | chromosomes with that      | at gene                           |                                   |                       |    |
| B) up to 18                     | genes for that trait       |                                   |                                   |                       |    |
| C) at most,                     | 2 alleles for that gene    |                                   |                                   |                       |    |
| D) a haploi                     | d number of 9 chromos      | somes                             |                                   |                       |    |
| E) up to, b                     | ut not more than, 18 dif   | ferent traits                     |                                   |                       |    |
| 4) Which of the                 | following occurs in mei    | osis but not in mitosis           | ?                                 |                       | 4) |
| A) condens                      | ation of chromatin         |                                   |                                   |                       |    |
| B) synapsi                      | s of chromosomes           |                                   |                                   |                       |    |
| C) product                      | ion of daughter cells      |                                   |                                   |                       |    |
| D) alignme                      | nt of chromosomes at t     | he equator                        |                                   |                       |    |
| E) chromo                       | some replication           |                                   |                                   |                       |    |
| 5) If the DNA co                | ontent of a diploid cell i | n the G <sub>1</sub> phase of the | cell cycle is <i>x</i> , then the | e DNA content of      | 5) |
| the same cell                   | at metaphase of meiosi     | s I would be                      |                                   |                       |    |
| - `                             |                            |                                   |                                   | <b>E</b> ) 0          |    |

| <ul> <li>6) Meiosis II is similar to mitosis in that</li> <li>A) homologous chromosomes synapse.</li> <li>B) the chromosome number is reduced.</li> <li>C) sister chromatids separate during anaphase.</li> <li>D) DNA replicates before the division.</li> <li>E) the daughter cells are diploid.</li> </ul>                                                                                                                                                                           | 6)  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <ul> <li>7) Homologous chromosomes move toward opposite poles of a dividing cell during</li> <li>A) mitosis.</li> <li>B) fertilization.</li> <li>C) meiosis II.</li> <li>D) binary fission.</li> <li>E) meiosis I.</li> </ul>                                                                                                                                                                                                                                                           | 7)  |
| <ul> <li>8) A karyotype results from which of the following?</li> <li>A) a natural cellular arrangement of chromosomes in the nucleus</li> <li>B) the cutting and pasting of parts of chromosomes to form the standard array</li> <li>C) the ordering of human chromosome images</li> <li>D) an inherited ability of chromosomes to arrange themselves</li> <li>E) the separation of homologous chromosomes at metaphase I of meiosis</li> </ul>                                        | 8)  |
| <ul> <li>9) A tetrad includes which of the following sets of DNA strands?</li> <li>A) two single-stranded chromosomes that have synapsed</li> <li>B) four sets of sister chromatids</li> <li>C) eight sets of sister chromatids</li> <li>D) two sets of sister chromatids that have synapsed</li> <li>E) four sets of unique chromosomes</li> </ul>                                                                                                                                     | 9)  |
| <ul> <li>10) Independent assortment of chromosomes occurs.</li> <li>A) The statement is true for mitosis and meiosis I.</li> <li>B) The statement is true for mitosis only.</li> <li>C) The statement is true for mitosis and meiosis II.</li> <li>D) The statement is true for meiosis I only.</li> <li>E) The statement is true for meiosis II only.</li> </ul>                                                                                                                       | 10) |
| <ul> <li>11) Which of the following is <i>true</i> of a species that has a chromosome number of 2n = 16?</li> <li>A) The species is diploid with 32 chromosomes per cell.</li> <li>B) A gamete from this species has four chromosomes.</li> <li>C) During the S phase of the cell cycle there will be 32 separate chromosomes.</li> <li>D) The species has 16 sets of chromosomes per cell.</li> <li>E) Each cell has eight homologous pairs.</li> </ul>                                | 11) |
| <ul> <li>12) Which of the following is a true statement about sexual vs. asexual reproduction?</li> <li>A) In sexual reproduction, individuals transmit 50% of their genes to each of their offspring.</li> <li>B) In asexual reproduction, offspring are produced by fertilization without meiosis.</li> <li>C) Sexual reproduction requires that parents be diploid.</li> <li>D) Asexual reproduction, but not sexual reproduction, is characteristic of plants and fungi.</li> </ul> | 12) |

E) Asexual reproduction produces only haploid offspring.

Use the following information to answer the next questions.

There is a group of invertebrate animals called rotifers, among which a particular group of species reproduces, as far as is known, only asexually. These rotifers, however, have survived a long evolutionary history without evidence of having been overcome by excessive mutations.

| <ul> <li>13) Since the rotifers develop from eggs, but asexually, what can you predict?</li> <li>A) No males can be found.</li> <li>B) While asexual, both males and females are found in nature.</li> <li>C) The animals are all hermaphrodites.</li> <li>D) All males can produce eggs.</li> <li>E) The eggs and the zygotes are all haploid.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                    | 13) _            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
| <ul> <li>14) How does the sexual life cycle increase the genetic variation in a species?</li> <li>A) by increasing gene stability</li> <li>B) by decreasing mutation frequency</li> <li>C) by allowing fertilization</li> <li>D) by allowing crossing over</li> <li>E) by conserving chromosomal gene order</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14) <sub>-</sub> |  |
| <ul> <li>15) If a cell has completed the first meiotic division and is just beginning meiosis II, which of the following is an appropriate description of its contents?</li> <li>A) It has one-fourth the DNA and one-half the chromosomes as the originating cell.</li> <li>B) It is identical in content to another cell from the same meiosis.</li> <li>C) It has half the amount of DNA as the cell that began meiosis.</li> <li>D) It has half the chromosomes but twice the DNA of the originating cell.</li> <li>E) It has the same number of chromosomes but each of them has different alleles than another cell from the same meiosis.</li> </ul>                                                                                                                   | 15) _            |  |
| <ul> <li>16) Referring to a plant's sexual life cycle, which of the following terms describes the process that leads directly to the formation of gametes?</li> <li>A) sporophyte meiosis</li> <li>B) gametophyte mitosis</li> <li>C) sporophyte mitosis</li> <li>D) alternation of generations</li> <li>E) gametophyte meiosis</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16) _            |  |
| <ul> <li>17) Independent assortment of chromosomes is a result of <ul> <li>A) the random and independent way in which each pair of homologous chromosomes lines up at the metaphase plate during meiosis I.</li> <li>B) the random and independent way in which each pair of homologous chromosomes lines up at the metaphase plate during meiosis I, the random nature of the fertilization of ova by sperm, the random distribution of the sister chromatids to the two daughter cells during anaphase II, and the relatively small degree of homology shared by the X and Y chromosomes.</li> <li>C) the relatively small degree of homology shared by the X and Y chromosomes.</li> <li>D) the random nature of the fertilization of ova by sperm.</li> </ul> </li> </ul> | 17) _            |  |

E) the random distribution of the sister chromatids to the two daughter cells during anaphase II.

| 18) The frequency o because this red | f heterozygosity for<br>uces the frequency ( | the sickle-cell anemi<br>of malaria. Such a rela | a allele is unusually<br>itionship is related to | high, presumably<br>o which of the | 18) |
|--------------------------------------|----------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------|-----|
| following?                           |                                              |                                                  | ·                                                |                                    |     |
| A) Darwin's c                        | bservations of com                           | petition                                         |                                                  |                                    |     |
| B) Mendel's l                        | aw of segregation                            |                                                  |                                                  |                                    |     |
| C) the malaria                       | al parasite changing                         | the allele                                       |                                                  |                                    |     |
| D) Mendel's l                        | aw of independent                            | assortment                                       |                                                  |                                    |     |
| E) Darwin's e                        | xplanation of natur                          | al selection                                     |                                                  |                                    |     |
| 19) In certain plants                | , tall is dominant to                        | short. If a heterozygo                           | us plant is crossed v                            | vith a homozygous                  | 19) |
| tall plant, what i                   | s the probability th                         | at the offspring will be                         | e short?                                         |                                    |     |
| A) 1/4                               | B) 0                                         | C) 1/2                                           | D) 1                                             | E) 1/6                             |     |

The following questions refer to the pedigree chart in Figure 14.2 for a family, some of whose members exhibit the dominant trait, *W*. Affected individuals are indicated by a dark square or circle.



Figure 14.2

| 20) What is the genoty                                                   | /pe of individual II                                            | -5?                                                                  |                                  |              | 20) |
|--------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|--------------|-----|
| R) WW or www                                                             |                                                                 |                                                                      |                                  |              |     |
| C) ww.or Ww                                                              |                                                                 |                                                                      |                                  |              |     |
| D) WW                                                                    |                                                                 |                                                                      |                                  |              |     |
| E) ww                                                                    |                                                                 |                                                                      |                                  |              |     |
| 21) In the cross AaBbC                                                   | Cc × AaBbCc, what is                                            | s the probability of pr                                              | oducina the aenotyr              | be AABBCC?   | 21) |
| A) 1/8                                                                   | B) 1/4                                                          | C) 1/16                                                              | D) 1/32                          | E) 1/64      |     |
| A) multiple alle<br>C) epistasis                                         | les                                                             | B) i<br>D) j                                                         | incomplete dominan<br>pleiotropy | ce           |     |
| 23) The individual wi                                                    | th genotype <i>AaBbC</i><br>aior reason?                        | <i>CDdEE</i> can make ma                                             | ny kinds of gametes.             | Which of the | 23) |
|                                                                          |                                                                 | I                                                                    |                                  |              |     |
| A) crossing ove                                                          | r during prophase                                               |                                                                      |                                  |              |     |
| A) crossing ove<br>B) different pos                                      | sible alignments of<br>for dominant allel                       | chromosomes<br>es to segregate togeth                                | her                              |              |     |
| A) crossing ove<br>B) different pos<br>C) the tendency<br>D) segregation | sible alignments of<br>for dominant allel<br>of maternal and pa | <sup>2</sup> chromosomes<br>es to segregate togeth<br>ternal alleles | ner                              |              |     |

Use the following information to answer the questions below.

Radish flowers may be red, purple, or white. A cross between a red-flowered plant and a white-flowered plant yields all-purple offspring. The part of the radish we eat may be oval or long, with long being the dominant characteristic.

|      | 24) In the $F_2$ generation of the above cross, which of the following phenotypic ratios would be |                                        |                                  |                          |                                | 24) |
|------|---------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------|--------------------------|--------------------------------|-----|
|      | A) 6:3:3:2:1:1                                                                                    | B) 9:3:3:1                             | C) 1:1:1:1                       | D) 1:1:1:1:1:1           | E) 9:4:3                       |     |
|      | 25) Which of the follow                                                                           | ring differentiates b                  | between independent              | t assortment and segre   | gation?                        | 25) |
|      | A) The law of seg                                                                                 | regation is accoun                     | ted for by anaphase              | of mitosis.              |                                |     |
|      | B) The law of ind<br>another.                                                                     | lependent assortm                      | ent requires describi            | ng two or more genes r   | relative to one                |     |
|      | C) The law of ind                                                                                 | lependent assortm                      | ent is accounted for k           | by observations of prop  | ohase I.                       |     |
|      | D) The law of seg                                                                                 | regation requires l                    | naving two or more o             | generations to describe  |                                |     |
|      | E) The law of seg                                                                                 | regation requires of                   | describing two or mo             | re genes relative to on  | e another.                     |     |
|      | 26) Hutchinson-Gilford                                                                            | d progeria is an exc                   | eedingly rare humar              | n genetic disorder in w  | hich there is very             | 26) |
|      | early senility and de                                                                             | eath, usually from                     | coronary artery disea            | ase, at an average age o | of approximately               |     |
|      | 13. Patients, who loo                                                                             | ok very old even a                     | s children, do not live          | e to reproduce. Which    | of the following               |     |
|      | represents the most                                                                               | likely assumption                      | ?                                |                          |                                |     |
|      | A) The disorder r                                                                                 | nay be due to mut                      | ation in a single prote          | ein-coding gene.         |                                |     |
|      | B) Successive ger                                                                                 | herations of a family                  | therefore there must             | ive more and more cas    | es over time.                  |     |
|      | C) All cases musi                                                                                 | occur in relatives;                    | inererore, inere mus             | a be only one mutant a   | ineie.                         |     |
|      | D) The disease is<br>E) Each patient w                                                            | ulusonal uonna<br>vill bavo bad at loa | st one affected family           | mombor in a proviou      | sachoration                    |     |
|      | E) Each patient v                                                                                 | viii Have Hau at lea                   |                                  | y member in a previou    | s generation.                  |     |
|      | 27) The fact that all seve                                                                        | en of the pea plant                    | traits studied by Me             | ndel obeyed the princi   | ple of                         | 27) |
|      | independent assortr                                                                               | ment most probabl                      | y indicates which of             | the following?           |                                |     |
|      | A) All of the gene                                                                                | es controlling the ti                  | alts behaved as if the           | ey were on different ch  | romosomes.                     |     |
|      | B) None of the tra                                                                                | alts obeyed the law                    | v of segregation.                |                          |                                |     |
|      | C) The diploid hu                                                                                 | umber of chromoso                      | omes in the pea plant            | s was 7.                 |                                |     |
|      | E) The formation                                                                                  | of comotos in play                     | ans were located on              |                          |                                |     |
|      | E) The formation                                                                                  | i or gametes in plai                   |                                  | onry.                    |                                |     |
| Use  | the following information                                                                         | to answer the que                      | stions below.                    |                          |                                |     |
| Tall | ness (T) in snapdragons is                                                                        | dominant to dwar                       | fness ( <i>t</i> ), while red (F | R) flower color is domi  | nant to white ( <i>r</i> ). Th | e   |
| hete | erozygous condition results                                                                       | s in pink ( <i>Rr</i> ) flowe          | er color.                        |                          |                                |     |
|      | 28) A dwarf, red snapd                                                                            | ragon is crossed w                     | ith a plant homozygo             | ous for tallness and wh  | nite flowers. What             | 28) |
|      | are the genotype an                                                                               | d phenotype of the                     | e F <sub>1</sub> individuals?    |                          |                                |     |
|      | A) TTRR—tall an                                                                                   | d red                                  |                                  |                          |                                |     |
|      | B) <i>ttRr</i> —dwarf a                                                                           | nd pink                                |                                  |                          |                                |     |
|      | C) TtRr—tall and                                                                                  | l red                                  |                                  |                          |                                |     |

- D) *ttrr*—dwarf and white
- E) TtRr—tall and pink

Use the following pedigree (Figure 14.3) for a family in which dark-shaded symbols represent individuals with one of the two major types of colon cancer. Numbers under the symbols are the individual's age at the time of diagnosis.





- 29) The affected woman in generation IV is thinking about her future and asks her oncologist (cancer 29) specialist) whether she can know whether any or all of her children will have a high risk of the same cancer. The doctor would be expected to advise which of the following?
  - I. genetic counseling
  - II. prenatal diagnosis when/if she becomes pregnant
  - III. testing to see whether she has the allele
  - IV. testing to see whether her future spouse or partner has the allele
    - A) II only
    - B) III and IV only
    - C) I and II only
    - D) I, II, and III only
    - E) I only
- 30) Two plants are crossed, resulting in offspring with a 3:1 ratio for a particular trait. What does this suggest?

31)

- A) that the parents were true-breeding for contrasting traits
- B) that each offspring has the same alleles for each of two traits
- C) that the trait shows incomplete dominance
- D) that a blending of traits has occurred
- E) that the parents were both heterozygous for a single trait

31) Most genes have many more than two alleles. However, which of the following is also true?

- A) There may still be only two phenotypes for the trait.
- B) Most of the alleles will never be found in a live-born organism.
- C) At least one allele for a gene always produces a dominant phenotype.
- D) More than two alleles in a genotype is considered lethal.
- E) All of the alleles but one will produce harmful effects if homozygous.

Use the following information to answer the questions below.

A woman who has blood type A positive has a daughter who is type O positive and a son who is type B negative. Rh positive is a trait that shows simple dominance over Rh negative and is designated by the alleles *R* and *r*, respectively. A third gene for the MN blood group has codominant alleles *M* and *N*.

| 32) Which of th                                  | e following is a possible ph                                 | nenotype for the fat                        | ner?                                           |                                              | 32)                 |
|--------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|------------------------------------------------|----------------------------------------------|---------------------|
| A) B posi                                        | tive                                                         |                                             |                                                |                                              |                     |
| B) AB ne                                         | gative                                                       |                                             |                                                |                                              |                     |
| C) O neg                                         | ative                                                        |                                             |                                                |                                              |                     |
| D) A nega                                        | ative                                                        |                                             |                                                |                                              |                     |
| E) impos                                         | sible to determine                                           |                                             |                                                |                                              |                     |
| Use the following info                           | rmation to answer the que                                    | stions below.                               |                                                |                                              |                     |
| Radish flowers may be<br>all-purple offspring. T | e red, purple, or white. A ci<br>he part of the radish we ea | ross between a red-<br>at may be oval or lo | flowered plant and a<br>ng, with long being th | white-flowered plan<br>ne dominant character | t yields<br>ristic. |
| 33) The flower (                                 | color trait in radishes is an                                | example of which o                          | of the following?                              |                                              | 33)                 |
| A) incom                                         | plete dominance                                              |                                             |                                                |                                              |                     |
| B) a mult                                        | iple allelic system                                          |                                             |                                                |                                              |                     |
| C) codon                                         | ninance                                                      |                                             |                                                |                                              |                     |
| D) epista:                                       | sis                                                          |                                             |                                                |                                              |                     |
| E) sex lin                                       | kage                                                         |                                             |                                                |                                              |                     |
| 34) If true-bree                                 | ding red long radishes are                                   | crossed with true-b                         | preeding white oval ra                         | adishes, the F <sub>1</sub> will             | 34)                 |
| be expected                                      | to be which of the following                                 | ng?                                         |                                                |                                              |                     |
| A) red an                                        | d oval                                                       | 0                                           |                                                |                                              |                     |
| B) purple                                        | e and oval                                                   |                                             |                                                |                                              |                     |
| C) purple                                        | and long                                                     |                                             |                                                |                                              |                     |
| D) red an                                        | d long                                                       |                                             |                                                |                                              |                     |
| E) white                                         | and long                                                     |                                             |                                                |                                              |                     |
| 35) How many<br>with the ger                     | unique gametes could be p<br>notype <i>AaBbCCDdFF</i> ?      | produced through ir                         | ndependent assortme                            | nt by an individual                          | 35)                 |
| A) 64                                            | B) 4                                                         | C) 8                                        | D) 32                                          | E) 16                                        |                     |
| 36) Black fur in                                 | mice (B) is dominant to bro                                  | own fur (b). Short ta                       | ills (7) are dominant t                        | o long tails (t). What                       | 36)                 |
| fraction of t                                    | he progeny of crosses BbTt                                   | × BBtt will be expe                         | cted to have black fur                         | and long tails?                              |                     |
| A) 1/2                                           | B) 3/16                                                      | C) 9/16                                     | D) 1/16                                        | E) 3/8                                       |                     |
| 37) Males are m                                  | ore often affected by sex-l                                  | inked traits than fe                        | males because                                  |                                              | 37)                 |
| A) female<br>chrom                               | e hormones such as estroge<br>osome.                         | n often compensate                          | for the effects of mu                          | tations on the X                             | 577                 |
| B) mutati                                        | ions on the Y chromosome                                     | often worsen the ef                         | fects of X-linked mut                          | ations.                                      |                     |
| C) X chro                                        | mosomes in males general                                     | lly have more mutat                         | tions than X chromos                           | omes in females.                             |                     |
| D) male h                                        | ormones such as testostere                                   | one often alter the e                       | ffects of mutations on                         | the X chromosome.                            |                     |
| E) males                                         | are hemizygous for the X o                                   | chromosome.                                 |                                                |                                              |                     |

## 38) Map units on a linkage map cannot be relied upon to calculate physical distances on a chromosome38) for which of the following reasons?

- A) Physical distances between genes change during the course of the cell cycle.
- B) The gene order on the chromosomes is slightly different in every individual.
- C) The relationship between recombination frequency and map units is different in every individual.

39)

- D) Linkage map distances are identical between males and females.
- E) The frequency of crossing over varies along the length of the chromosome.

39) A nonreciprocal crossover causes which of the following products?

- A) duplication and nondisjunction
- B) duplication only
- C) deletion only
- D) nondisjunction
- E) deletion and duplication

The following is a map of four genes on a chromosome.



Figure 15.1

| 40) Between which two genes would you expect the highest frequency of recombination? |                        |                        |                        |             | 40) |
|--------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|-------------|-----|
| A) Wand E                                                                            | B) A and W             | C) E and G             | D) A and G             | E) A and E  |     |
| 41) Which of the follo                                                               | wing is known as a P   | hiladelphia chromos    | some?                  |             | 41) |
| A) a human chr                                                                       | omosome 9 that is for  | und only in one type   | of cancer              |             |     |
| B) a human chr                                                                       | omosome 22 that has    | had a specific trans   | location               |             |     |
| C) an animal ch                                                                      | romosome found pri     | marily in the mid-A    | tlantic area of the Un | ited States |     |
| D) a chromosor                                                                       | ne found not in the n  | ucleus but in mitoch   | ondria                 |             |     |
| E) an imprinted                                                                      | d chromosome that al   | ways comes from th     | e mother               |             |     |
| (12) \M/bat is the source                                                            | of the extra chromos   | omo 21 in an Indivi    | hual with Down over    | romo?       | 42) |
| 42) What is the source<br>Δ) pondisiuncti                                            | on in the father only  |                        | iuai witti Dowii sync  | II UTTE!    | 4Z) |
| B) duplication                                                                       | of the chromosome      |                        |                        |             |     |
| C) popdisiuncti                                                                      | on or translocation in | either narent          |                        |             |     |
| D) nondisjuncti                                                                      | on in the mother only  |                        |                        |             |     |
| F) It is impossi                                                                     | ole to detect with cur | rent technology        |                        |             |     |
| L) 11 13 111 p0331                                                                   |                        | ent teenhology.        |                        |             |     |
| 43) Recombination be                                                                 | tween linked genes c   | omes about for what    | reason?                |             | 43) |
| A) Crossovers b                                                                      | between these genes r  | esult in chromosom     | al exchange.           |             |     |
| B) Mutation on                                                                       | one homolog is diffe   | rent from that on the  | e other homolog.       |             |     |
| C) When genes                                                                        | are linked they alway  | ys "travel" together a | t anaphase.            |             |     |
|                                                                                      |                        |                        |                        |             |     |

D) Independent assortment sometimes fails because Mendel had not calculated appropriately.

E) Nonrecombinant chromosomes break and then re-join with one another.

| 44) How would one exp              | lain a testcross ir | nvolving F <sub>1</sub> dihybrid | flies in which more p     | arental-type         | 44)             |
|------------------------------------|---------------------|----------------------------------|---------------------------|----------------------|-----------------|
| offspring than recon               | nbinant-type offs   | spring are produced?             |                           |                      |                 |
| A) The two genes                   | are linked but or   | n different chromoson            | nes.                      |                      |                 |
| B) Recombination                   | n did not occur in  | the cell during meios            | sis.                      |                      |                 |
| C) Both of the cha                 | aracters are contr  | olled by more than on            | ie gene.                  |                      |                 |
| D) The testcross v                 | vas improperly p    | erformed.                        | 5                         |                      |                 |
| E) The two genes                   | are closely linke   | d on the same chromo             | osome.                    |                      |                 |
|                                    |                     |                                  |                           |                      |                 |
| 45) Cinnabar eyes is a se          | ex-linked recessi   | ve characteristic in fru         | uit flies. If a female ha | aving cinnabar eyes  | 45)             |
| is crossed with a wil              | d-type male, wh     | at percentage of the F           | 1 males will have cir     | nabar eyes?          |                 |
| A) 100%                            | B) 0%               | C) 50%                           | D) 75%                    | E) 25%               |                 |
| Refer to the following information | tion to answer th   | e questions below.               |                           |                      |                 |
| A man who is an achondronla        | stic dwarf with n   | ormal vision marries             | a color-blind woman       | of normal beight. Th | ne man's father |
| was 6 feet tall and both the wo    | oman's parents w    | vere of average height           | Achondroplastic dw        | arfism is autosomal  | dominant and    |
| red-green color blindness is X-    | -linked recessive   |                                  |                           |                      | dominant, and   |
| 5                                  |                     |                                  |                           |                      |                 |
| 46) How many of their of           | daughters might     | be expected to be cold           | or-blind dwarfs?          |                      | 46)             |
| A) three out of for                | Jr                  |                                  |                           |                      |                 |
| B) half                            |                     |                                  |                           |                      |                 |
| C) one out of four                 |                     |                                  |                           |                      |                 |
| D) none                            |                     |                                  |                           |                      |                 |
| E) all                             |                     |                                  |                           |                      |                 |
| 47) At which phase(s) is           | it preferable to c  | obtain chromosomes t             | o prepare a karvotvo      | e?                   | 47)             |
| A) anaphase                        |                     |                                  |                           |                      | ,               |
| B) late telophase                  |                     |                                  |                           |                      |                 |
| C) late prophase of                | or metaphase        |                                  |                           |                      |                 |
| D) late anaphase                   | or early telophas   | е                                |                           |                      |                 |
| E) early prophase                  | ;<br>               |                                  |                           |                      |                 |
| _/ ····/ [=··[···                  |                     |                                  |                           |                      |                 |
| 48) Sex determination ir           | n mammals is du     | e to the SRY region of           | the Y chromosome.         | An abnormality of    | 48)             |
| this region could all              | ow which of the     | following to have a m            | ale phenotype?            | ,                    | , <u> </u>      |
| A) Down syndror                    | ne, 46, XX          | 5                                | 1 51                      |                      |                 |
| B) translocation of                | of SRY to an autos  | some of a 46. XX indiv           | vidual                    |                      |                 |
| C) a person with                   | one normal and c    | one shortened (deleted           | X (b                      |                      |                 |
| D) Turner syndro                   | me, 45, X           | ,                                | ,                         |                      |                 |
| E) a person with                   | an extra X chrom    | osome                            |                           |                      |                 |
| 19) Mitochondrial DNA              | is primarily inv    | olved in coding for pr           | otains needed for ele     | ctron transport      | 40)             |
| Therefore, in which                | body systems we     | bived in county for pr           | mitochondrial gong r      | putations to bo      | 47)             |
| exhibited?                         | body systems we     | Julu you expect most             | initochonuliai gene i     |                      |                 |
| Δ) the circulation                 | system              |                                  |                           |                      |                 |
| B) the immune su                   | istem and the blo   | nd                               |                           |                      |                 |
| C) the skin and se                 |                     |                                  |                           |                      |                 |
| D) the nervous an                  | id muscular sveta   | ems                              |                           |                      |                 |
| F) the excretory a                 | nd respiratory sv   | /stems                           |                           |                      |                 |
|                                    |                     |                                  |                           |                      |                 |
|                                    |                     |                                  |                           |                      |                 |

| <ul> <li>50) Sturtevant provided genetic evidence for the existence of four pairs of chromosomes in <i>Drosophila</i> in which of these ways?</li> <li>A) <i>Drosophila</i> genes have, on average, four different alleles.</li> <li>B) <i>Drosophila</i> genes cluster into four distinct groups of linked genes.</li> <li>C) The entire <i>Drosophila</i> genome has approximately 400 map units.</li> <li>D) The overall number of genes in <i>Drosophila</i> is a multiple of four.</li> <li>E) There are four major functional classes of genes in <i>Drosophila</i>.</li> </ul>                                                                                                                                                                            | 50) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <ul> <li>51) Suppose that a gene on human chromosome 18 can be imprinted in a given pattern in a female parent but not in a male parent. A couple in whom each maternal meiosis is followed by imprinting of this gene have children. What can we expect as a likely outcome?</li> <li>A) All daughters but no sons will bear their mother's imprinting pattern.</li> <li>B) Each of the children will imprint a different chromosome.</li> <li>C) All sons but no daughters will bear their mother's imprinting pattern.</li> <li>D) All the children will bear their mother's imprinting pattern but only daughters will then pass it down.</li> <li>E) All sons and daughters will have a 50% chance of receiving the mother's imprinting pattern.</li> </ul> | 51) |
| <ul> <li>52) Which of the following produces a Mendelian pattern of inheritance?</li> <li>A) a mitochondrial gene mutation</li> <li>B) a chloroplast gene mutation</li> <li>C) genomic imprinting</li> <li>D) a trait acted upon by many genes</li> <li>E) viral genomes that inhabit egg cytoplasm</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52) |
| <ul> <li>53) Calico cats are female because</li> <li>A) multiple crossovers on the Y chromosome prevent orange pigment production.</li> <li>B) a male inherits only one of the two X-linked genes controlling hair color.</li> <li>C) the males die during embryonic development.</li> <li>D) the Y chromosome has a gene blocking orange coloration.</li> <li>E) only females can have Barr bodies.</li> </ul>                                                                                                                                                                                                                                                                                                                                                  | 53) |
| <ul> <li>54) One possible result of chromosomal breakage is for a fragment to join a nonhomologous chromosome. What is this alteration called?</li> <li>A) translocation</li> <li>B) transversion</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54) |

C) deletion

D) inversion

E) duplication